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damping and strong rapid drive are investigated. The averaged equations have the forms of the parametric AL
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the stability properties are analyzed. The analytical predictions of the perturbed inverse scattering transform are
confirmed by the numerical simulations of the AL and DNLS equations with rapidly varying drive and
damping.
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I. INTRODUCTION

Recently the problem of dynamics of nonlinear lattices
under strong and rapid modulations of parameters has at-
tracted a lot of attention. Two systems have been analyzed.
The first one is the diffraction-managed array of optical
waveguides, with diffraction varying periodically along the
beam propagation �1�. The model is described by the discrete
nonlinear Schrödinger �DNLS� equation with the coefficient
of tunnel coupling between sites c�t� rapidly and strongly
varying in time:

iunt +
1

�
c� t

�
��un+1 + un−1� + 2�un�2un = 0, �1�

where ��1. The analysis exhibits the existence of a type of
discrete spatial optical solitons with beam width and peak
amplitude evolving periodically during propagation.

The second system is the Bose-Einstein condensate in a
periodic �in space� potential with a varying �in time� scatter-
ing length. In the tight-binding approximation this system is
described by the DNLS equation �2� with a nonlinearity co-
efficient ��t� strongly and rapidly varying in time:

iunt + �un+1 + un−1� +
1

�
�� t

�
��un�2un = 0. �2�

It was shown that this system supports nonlinearity-managed
discrete solitons �3�. In a more general context it is of interest
to investigate the influence of rapid perturbations on the dy-
namics of discrete solitons in nonlinear lattices. The case of
strongly and rapidly varying external drivers is particularly
important for applications. This problem is encountered both
in the study of the dynamics of a magnetic flux quantum in
an array of long Josephson junctions with varying ac current
�4� and in the evolution of an optical field in a nonlinear
chain of resonators or microcavities in the presence of pump-
ing �5–8�.

In this paper we consider the influence of a rapid strong
drive on discrete bright solitons and cnoidal waves of the
Ablowitz-Ladik �AL� and the DNLS equations with damp-
ing. Although the AL system has scarce physical applications
it has many advantages from the analytical point of view,
such as the complete integrability of the unperturbed system,
existence of moving discrete solitons, etc. In some regions of
the parameter space, the DNLS equation can be described as
a perturbation of the AL model, a feature that we shall take
advantage of in the following. The dynamics of discrete soli-
tons in the AL and DNLS equations under the influence of
damping and slowly varying driving field has been studied in
Refs. �9,10�. Recently the influence of parametric drivers on
the stability of strongly localized modes of the DNLS equa-
tion near the anticontinuum limit has been investigated in
�11�. The stability of solitons in the continuous parametri-
cally driven NLS equation has been studied in �12,13�. Here
we address a general discrete nonlinear system with a strong
rapid drive modeled by the following equation:

iunt + �un+1 + un−1 − �2 + ��un�

+ �un�2��1 − ���un+1 + un−1� + 2�un� =
1

�
f� t

�
� − i�un,

�3�

where f is a zero-mean periodic function with period 1 that
describes the rapid drive, and the small parameter � is the
period of the drive. Here the parameter ��0 denotes the
damping term, � is the propagation constant in optics
�chemical potential in Bose-Einstein condensates�, and the
parameter �� �0,1� characterizes the type of nonlinearity.
For �=0 the nonlinearity is of intersite type as in the AL
model while for �=1 we have the on-site nonlinearity of the
DNLS equation. In absence of strong rapid drive and damp-
ing Eq. �3� coincides with the Salerno model �14� which
interpolates between the AL model and the DNLS model. We
show that, by averaging out the fast time scale, one can re-
duce Eq. �3�, for particular choices of parameters, to the
parametrically driven AL and DNLS equations with damp-
ing. The existence of parametric discrete bright solitons and
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cnoidal waves of these equations is then investigated and the
stability properties are studied both analytically and numeri-
cally. We find that the analytical predictions obtained from
the averaged equations by means of a perturbation scheme
based on the inverse scattering method are in good agree-
ment with direct numerical simulations of the problem with
rapidly varying drive and damping.

Finally, we remark that the physical systems where para-
metric discrete solitons of the type considered in this paper
can be realized are chains of linearly coupled nonlinear mi-
crocavities �15� and nonlinear waveguide arrays with dielec-
tric mirrors at the ends, driven by an external time-dependent
field �7,8�. In this case the equation describing the discrete
cavity solitons has the form of the parametric DNLS equa-
tion

iunt + �un + i�un + 	�un�2un + C�un+1 + un−1 − 2un� = Fn�t� ,

�4�

where � is the detuning from the linear resonance parameter,
� is the effective damping parameter, C is the effective cou-
pling between adjacent waveguides, and Fn�t� is the input
field in the nth waveguide. Injecting a field that is homoge-

neous in space and rapidly varying in time, we can generate
discrete parametric solitons in this system.

The paper is organized as follows. In Sec. II we derive the
averaged DNLS-type equation for the strongly and rapidly
varying external drive model. In Sec. III we analyze the soli-
tons in a damped AL system with parametric drive. We use
the perturbation theory based on the inverse scattering trans-
form �IST� and study the stability region of parametric dis-
crete solitons. Periodic solutions of the damped AL equation
with parametric drive are also found in this section. The
discrete soliton dynamics in the parametrically driven DNLS
equation is investigated in Sec. IV.

II. AVERAGING

We look for the solution of Eq. �3� in the form

un�t� = un
�0��t,

t

�
� + �un

�1��t,
t

�
� + ¯ , �5�

where un
�0�, un

�1�, . . . are periodic in the argument 
= t /�. We
substitute this ansatz into Eq. �3� and collect the terms with
the same powers of �. We obtain the hierarchy of equations

iun

�0� = f�
� ,

iunt
�0� + �un+1

�0� + un−1
�0� − �2 + ��un

�0�� + �un
�0��2��1 − ���un+1

�0� + un−1
�0� � + 2�un

�0�� = − i�un
�0� − iun


�1�.

The first equation imposes the form of the leading-order term:

un
�0��t,
� = − iF�
� + an�t� ,

where F�
�=�0

 f�s�ds is the antiderivative of f and an depends only on the slow variable t. The second equation is the

compatibility equation for the existence of the expansion �5�. By integrating over a period in 
, we obtain

iant + �an+1 + an−1 − �2 + ��an� + �1 − ��	�an − iF�·��2�an+1 + an−1 − 2iF�·��
 + 2�	�an − iF�·��2�an − iF�·��
 = − i�an

which gives

iant + �an+1 + an−1 − �2 + ��an� + �an�2��1 − ���an+1 + an−1� + 2�an� = − i�an + �an −
�

2
��1 − ���an+1 + an−1� + 2�1 + ��an� , �6�

where �=2	F2
.
Thus, the averaging method applied to Eq. �3� leads to a

parametrically driven nonlinear lattice equation which re-
duces to the Salerno model �14� in the absence of perturba-
tions. It is possible to consider a random forcing instead of a
periodic one. More precisely, we get the same result if the
source f�
� is a colored noise with coherence time of order 1.
However, the power spectral density of the source should
vanish at zero frequency. Otherwise it would appear as a
phase diffusion and this would destroy the stability of the
stationary solution that we will introduce next.

We introduce the rescaled time T= t�1+��1−�� /2� and
the rescaled function An=an /�1+��1−�� /2. The averaged
equation for the function An�T� has the form

iAnT + �An+1 + An−1 − �2 + ��An� + �An�2�An+1 + An−1� = Rn,

�7�

Rn = − i
An + �An + ��An�2�An+1 + An−1 − 2An� , �8�

where

� =
�

1 + ��1 − ��/2
, 
 =

�

1 + ��1 − ��/2
,
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� =
� − 2�

1 + ��1 − ��/2
.

The left-hand side of �7� is the Ablowitz-Ladik equation,
which is completely integrable. The right-hand side can be
seen as a perturbation of this system. We shall use the per-
turbed inverse scattering transform to study the evolution
dynamics of AL solitons driven by the perturbation Rn.

III. THE DAMPED AL SYSTEM
WITH PARAMETRIC DRIVE

We consider in this section the case �=0, that is, the AL
model with damping and rapid drive. Therefore, we consider
the perturbed AL equation �7� with the perturbation

Rn = − i
An + �An. �9�

A. Perturbed inverse scattering transform

We assume that the damping parameter � and the para-
metric drive parameter � are small �but � can be of order 1�.
Therefore, 
 and � are small, and, following �16–18�, the
evolution equations for the soliton parameters in the adia-
batic approximation have the form

xT = 2
sinh �

�
sin 	

+
sinh �

�
�

n=−�

�
�n − x�cosh ��n − x�Im�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�
,

�T = sinh � �
n=−�

�
cosh ��n − x�Im�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�
,

	T = sinh � �
n=−�

�
sinh ��n − x�Re�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�
,

�T = 2 cosh � cos 	 + 2
sinh �

�
	 sin 	 − 2 − �

+ sinh � �
n=−�

�
�n − x�sinh ��n − x�Re�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�

− cosh � �
n=−�

�
cosh ��n − x�Re�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�

+ 	
sinh �

�
�

n=−�

�
�n − x�cosh ��n − x�Im�rn�

cosh ��n + 1 − x�cosh ��n − 1 − x�
,

where rn=Rnexp�−i	�n−x�− i��. Using standard analytical
tools �Poisson summation formula and residue theorem�, we
can compute the right-hand sides of these equations. The
equation for � takes the form

�T = �P��� + 
G���, �10�

where

P��� = − sinh2� �
s=−�

�

I��2	 + 2�s�sin�2�sx + 2�� ,

G��� = − 2 tanh � ,

with

I��a� =
2� sin a

� sinh�2��sinh��a/�2���
.

The equation for 	 has the form

	T = �P�	� + 
G�	�, �11�

where

P�	� = − sinh2� �
s=−�

�

K��2	 + 2�s�sin�2�sx + 2�� ,

G�	� = 0,

with

K��a� =
2� sin2�a/2�

� sinh2� sinh��a/�2���
.

The equation for the soliton center x has the form

xT = 2
sinh �

�
sin 	 + �P�x� + 
G�x�, �12�

where

P�x� = −
sinh2�

�
�

s=−�

�

J��2	 + 2�s�cos�2�sx + 2�� ,

G�x� = −
sinh2�

�
���x� ,

with J��a�=−I���a� and

���x� = �
n=−�

�
�n − x�

cosh ��n + 1 − x�cosh ��n − 1 − x�

=
4�

� sinh�2���s=1

�
sin�2�sx�

sinh��2s/��
.

Finally, the equation for the soliton phase � has the form

�T = 2 cosh � cos 	 + 2
sinh �

�
	 sin 	 − 2 − �

+ �P��� + 
G���, �13�

where
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P��� = − sinh � �
s=−�

�

L��2	 + 2�s�cos�	 + �s + 2� + 2�sx�

+ sinh � �
s=−�

�

K���2	 + 2�s�sin�2�sx + 2��

− sinh � �
s=−�

�

K��2	 + 2�s�cos�2�sx + 2��

−
	 sinh2�

2�
�

s=−�

�

I���2	 + 2�s�sin�2�sx + 2�� ,

G��� = − 	
sinh2�

�
���x� ,

with

L��a� =
2� sin�a/2�

� sinh � sinh��a/�2���
.

B. Parametrically driven AL solitons

The system �10�–�13� has zero fixed points if 
��
�which is equivalent to ����, or 
�� but ��−��2−
2

�0 �which is equivalent to ��� and ��2�−��2−�2�; one
fixed point if 
�� and −��2−
2�����2−
2 �which is
equivalent to 2�−��2−�2���2�+��2−�2� �this fixed
point is the one labeled + in Eqs. �14� and �15��; two fixed
points if 
��and ����2−
2 �which is equivalent to �
�2�+��2−�2�:

	± = 0, sin�2�±� = −



�
, cos�2�±� = ±�1 −


2

�2 ,

�14�

�± = arccosh�1 +
�

2
±

1

2
��2 − 
2� . �15�

The center of the soliton can be arbitrary. It is remarkable
that these values correspond not only to fixed points of the
system �10�–�13�, but also to fixed points of the averaged
partial differential equation �7�. Indeed, the two solitons la-
beled ±,

An�T� =
sinh �±

cosh��±�n − x±��
ei�±,

are exact solutions of Eq. �7� with �=0.
We can investigate the linear stability of these solutions.

The linearization of the nonlinear system �10�–�13� around
the parameters of the stationary solitons gives the linear sys-
tem

�1T = − 2� sinh2�±��±
�x±�cos�2�±�	1

− 4� tanh�±cos�2�±��1, �16�

	1T = − 2
	1, �17�

�1T = 2 sinh �±�1 − 2
�1, �18�

x1T = 2
sinh �±

�±
	1 − �

sinh2�±

�±

�2 + 4�±
2

3�±
2sinh�2�±�

cos�2�±�	1

− 

sinh2�±

�±
��±

� �x±�x1

− 

�±sinh�2�±� − sinh2�±

�±
2 ��±

�x±��1. �19�

The equation for x1 is decoupled from the other ones. The
three eigenvalues for the 3�3 system for �	1 ,�1 ,�1� are

�±
�1� = − 2
 ,

�±
�2� = − 
 + �
2 − 8� sinh �± tanh �±cos�2�±� ,

�±
�3� = − 
 − �
2 − 8� sinh �± tanh �±cos�2�±� .

The fixed point is stable if the real parts of the eigenvalues
are nonpositive. This shows that the fixed point labeled − is
unstable, since �−

�2��0, while the fixed point labeled + is
stable.

In the absence of damping 
=0 �which is equivalent to
�=0�, the soliton parameters � and � �amplitude and phase�
oscillate with the frequency �in the T variable�

�+ = �8� sinh �+ tanh �+ �20�

while the parameter 	 �velocity� is constant. This means that
the stationary soliton is stable. This also shows that stable
slowly moving breathers can propagate in the presence of
parametric drive.

We have performed numerical simulations of Eq. �6� to
confirm these predictions. In Fig. 1 we consider a perturba-
tion of the initial amplitude. The periodic oscillations of the
soliton parameters have the predicted period �20�. In Fig. 2
we consider a soliton with a positive velocity. As predicted
by the theory, this soliton can propagate in a stable way.

FIG. 1. Here �=0, �=1, �=0.022, and �=0 �i.e., �=0.0218
and 
=0�. The initial condition is a soliton with �=�+, x+=0, 	
=0, and �=�++0.02 ��+=0.948�. We plot the solution phase ob-
tained from the numerical integration of Eq. �6� �dashed line� and
compare with the theoretical oscillation obtained from �16�–�18�
�solid line�. The theoretical oscillation period �in the t variable� is
2� /�+ / �1+� /2�=16.6.
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In the presence of damping the soliton parameters � and
� oscillate with the frequency

�+ = �8��2 − 
2sinh �+ tanh �+ − 
2. �21�

These oscillations decay exponentially with the rate 
. In
addition, comparing �20� and �21� shows that the damping
enhances the oscillation period. In Fig. 3, right upper, we
plot the damping of the oscillations of the soliton parameters
obtained from the averaged equation �6� and compare it to
the theoretical formula. We have also simulated the original

equation �3� with the external drive f�
�=sin�2�
� and �
=0.125. We plot one of the obtained results in Fig. 3, lower
panel, which shows full agreement.

The system of equations �16�–�19� predicts that the soli-
ton parameter 	 decays exponentially at the rate 2
. Since
this parameter determines the velocity, this shows that the
propagation of moving solitons is not supported. If we de-
note by 	0 the initial value of the parameter 	, then the
soliton approaches the asymptotic form

An =
sinh �+

cosh��+�n − x+ − xF��
ei�+ �22�

with a rate of order exp�−2
t�, where the asymptotic posi-
tion is given by

xF =
sinh �+ sin 	0

�+

. �23�

In Fig. 4 the trapping of a soliton with an initial positive
velocity is shown. The asymptotic position xF of the soliton
as predicted by the perturbed IST is given by �23�. We plot
the theoretical soliton shape centered at xF and compare it
with the solution obtained from numerical simulations. After
time t=100 the soliton no longer moves and its position and
shape coincide exactly with �22� and �23�, respectively.

FIG. 2. Here �=0, �=1, �=0.022, �=0. The initial condition is
a soliton with �=�+, x+=0, 	=0.1, and �=�+. We plot the soliton
profiles �an�t�� at different times, which exhibits the stable propaga-
tion of the moving soliton.

FIG. 3. Here �=0, �=1, �=0.022, �=0.02. The initial condi-
tion is a soliton with �=�+, x+=0, 	=0, and �=�++0.02 ��+

=0.942�. We integrate numerically the averaged equation �6� and
plot the phase of a0�t� �dashed line� in the upper panel. We integrate
numerically the original equation �3� and plot the phase of a0�t�
ªu0�t�+ i sin�16�t� �dashed line� in the lower panel. The oscilla-
tions and damping given by the original equation and by the aver-
aged equation are the same, and they are correctly predicted by the
model �16�–�18� �solid line�. The period is 2� /�+ / �1+� /2�=25.9
and the exponential decay rate is �=0.02.

FIG. 4. Here �=0, �=1, �=0.022, �=0.02. The initial condi-
tion is a soliton with �=�+, x+=0, 	=0.1, and �=�+. We plot the
soliton profiles �an�t�� at different times, which exhibits the trapping
of the moving soliton. In the lower panel, the solid line is the
theoretical stationary soliton centered at xF=5.76 given by �23�.
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C. Periodic solutions of the damped AL equation
with parametric drive

In the following we discuss exact periodic solutions of the
parametrically damped and driven AL equation

iAnT + �An+1 − �2 + ��An + An−1�

+ �i� + �1 + i���An�2��An+1 + An−1� = − i
An + �An,

�24�

where ��0 models a small dispersive and nonlinear damp-
ing. In this regard we consider periodic stationary solutions
of the form

An = Aei�dn���n + xF�,m� . �25�

Direct substitution of Eq. �25� into Eq. �24� shows that a
solution is indeed obtained provided the two following rela-
tions are satisfied by the soliton parameter � and the modu-
lus m:

2 + � − 2
dn��,m�
cn��,m�2 + �
1 − �


�
+

2�dn��,m�
�cn��,m�2 �2�1/2

= 0,

�26�

�Np = 2K�m� , �27�

where Np is the number of sites in one period and K�m� is the
complete elliptic integral of the first kind. Here m� �0,1�
and Np must be a positive integer, so that there exists a nu-
merable set of pairs �� ,m� that satisfy the conditions �26�
and �27�. If the conditions are satisfied, then the periodic
function �25� is a solution of �24� with the amplitude A and
phase � given by

A = ±
sn��,m�
cn��,m�

, � = −
1

2
arcsin�


�
+

2�dn��,m�
�cn��,m�2 � ,

�28�

while the soliton center xF is arbitrary.
Another periodic solution of Eq. �24� can be constructed

by replacing the function dn into the ansatz �25� with the
elliptic cosine cn:

An = Aei�cn���n + xF�,m� . �29�

In this case the two conditions to be satisfied by � and m are

2 + � − 2
cn��,m�
dn��,m�2 + �
1 − �


�
+

2�cn��,m�
�dn��,m�2�2�1/2

= 0,

�30�

�Np = 4K�m� , �31�

and the soliton amplitude and phase are

A = ± �m
sn��,m�
dn��,m�

, � = −
1

2
arcsin�


�
+

2�cn��,m�
�dn��,m�2� .

�32�

It may be worth noting that in deriving these solutions
usage of the following identities for the Jacobi elliptic

functions �19� has been made:

dn�x + a,m� + dn�x − a,m� =
2dn�a,m�dn�x,m�

cn�a,m�2 + sn�a,m�2dn�x,m�2 ,

�33�

cn�x + a,m� + cn�x − a,m� =
2cn�a,m�cn�x,m�

dn�a,m�2 + msn�a,m�2cn�x,m�2 .

�34�

Also notice that in the limit of infinite period �i.e., m→1� the
above solutions both reduce to trains of well-separated AL
solitons of the form

An =
sinh���

cosh���n + xF��
ei�, �35�

with the soliton parameter satisfying

2 + � + ��2 − �
 + 2� cosh����2�1/2 − 2 cosh��� = 0.

For �=0 these equations reproduce the result in Eqs. �14�
and �15� of the previous section. Similar periodic solutions
exist also for the unperturbed AL equation �20� and for gen-
eralized AL equations with arbitrarily high-order nonlineari-
ties �21�.

In Fig. 5 we depict the waveforms of the above solutions

FIG. 5. Upper panel: Square modulus of the dn solution in Eq.
�25� with m=0.1, �=0.161 244 �Np=20�, xF=0, on a line of 160
points. The parameters are fixed as �=0.04, 
=0.02, �=0.015 58,
�=0. Lower panel: Square modulus of the cn solution in Eq. �29�
with parameters fixed as in the upper panel.
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on a line of 160 points for the case �=0.04, 
=0.02, �
=0.015 58, �=0, and the solution parameters are m=0.1, �
=2K�m� /Np=0.161 244, Np=20. We find, by direct numeri-
cal integrations of Eq. �24�, that for small values of the
damping and parametric driver amplitude these solutions re-
main stable under very long time evolution. This is shown in
Fig. 6 where the time evolution obtained from direct numeri-
cal simulations of Eq. �24� is depicted for parameters �
=0.15, 
=0.02, �=−0.098 438, �=0, which supports the
same dn and cn solutions as in Fig. 5. By keeping fixed the
damping constant and increasing the amplitude of the para-
metric driver in a certain range, we find that these solutions
remain stable for a very long time, while outside of this
range instabilities quickly develop. The development of the
instability for out-of-range parameters is investigated in Figs.
7 and 8.

Notice that while for the dn solution the instability sud-
denly sets in without any apparent pattern, the instability of
the cn solution seems to follow a precise pattern. In particu-
lar, from Fig. 8, we see that before the instability fully
develops—at time t�200—the cn solution bifurcates into a
period three solution at t�80, which remains stable for a

long time. The presence of a small dispersive nonlinear
damping �controlled by the parameter �� effectively in-
creases the stability of both the period one and the period
three solutions, as one can see from Fig. 9. The scenario
behind the development of the instability of the cn solution is
quite interesting and deserves more investigation.

IV. THE DAMPED DNLS SYSTEM
WITH PARAMETRIC DRIVE

We consider in this section that the nonlinear term is not
of the AL type but is a mixture of the AL cubic intersite
nonlinearity and the on-site DNLS cubic term. We shall ana-
lyze this system by considering such a nonlinearity as a per-
turbation of the cubic AL nonlinearity.

FIG. 6. Time evolution of �An�2 for the dn �upper panel� and cn
�lower panel� solutions in Fig. 5.

FIG. 7. Time evolution of the unstable dn solution in Eq. �25�
obtained for �=0.15, 
=0.02, �=−0.098 438, �=0, and the solu-
tion parameters as in Fig. 5: m=0.1, �=2K�m� /Np=0.161 244, Np

=20. Notice the change in the �An�2 scale from one panel to another.

SOLITONS IN STRONGLY DRIVEN DISCRETE… PHYSICAL REVIEW E 75, 016615 �2007�

016615-7



A. Perturbation theory for the cubic nonlinearity

In this section we consider the perturbed AL equation �7�
when the perturbation is given by

Rn = ��An�2�An+1 + An−1 − 2An� . �36�

If �=0, then Eq. �7� with the perturbation �36� is the inte-
grable AL equation. If �=1, then it is the standard DNLS
equation. In the adiabatic approximation, this perturbation
has no effect on the first-order differential equation for the
amplitude soliton parameter �, but the evolution equations
for the parameters x, 	, and � have corrective terms

xT = 2�1 − ��
sinh �

�
sin 	 + 2�

sinh2�

�2cosh �
sin 	 , �37�

	T = �P��x� , �38�

�T = 2 cosh � cos 	 + 2��1 − cos 	�sinh � tanh �

+ 2�1 − ��	 sin 	
sinh �

�
+ 2�	 sin 	

sinh2�

�2cosh �
− 2 − �

+ 2�Q��x� , �39�

where

P��x� = �
s=1

�
8�3s2sinh2�

�3sinh��2s/��
sin�2�sx� , �40�

Q��x� = − 1 +
sinh 2�

�
−

sinh2�

�2 − sinh � tanh � + 2�
s=1

�
2�2s�2sinh � cosh � + ��4s2cotanh��2s/�� − 2�2s��sinh2�

�4sinh��2s/��
cos�2�sx� .

�41�

FIG. 8. Time evolution of the unstable cn solution in Eq. �29� when the parameters are fixed as in Fig. 5. Notice the change in the �An�2
scale passing from one panel to another.
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We should keep in mind that the adiabatic approximation is
valid when the perturbation �36� is small, which is true if � is
small and � is arbitrary, or if � is arbitrary and � is small. In
the following, we shall keep only the term s=1 in the sums
�Eqs. �40� and �41��, to simplify the algebra, although the
analysis could be carried out with the full expressions. This
simplification is consistent with the adiabatic approximation.

B. Parametrically driven DNLS solitons

We now consider that the perturbation Rn is given by Eq.
�8�, that is, the sum of the cubic perturbation Eq. �36� and the
parametric drive with damping Eq. �9�. In these conditions,
there are two fixed points if 
�� �which is equivalent to
���� and �+��0 �which is equivalent to �−��0�:

	± = 0, sin�2�±� = −



�
, cos�2�±� = ± ��1 − �
2/�2�� ,

�42�

cosh��±� − 1 + �Q�±
�0� =

�

2
+

1

2
��2 − 
2. �43�

The center of the soliton x± must be an integer as soon as
��0. This is a manifestation of the Peierls-Nabarro barrier
�16,22�. Note that the function ��cosh���−1+�Q��0� is a
one-to-one increasing function from �0, � � to �0, � � for any
��0. Therefore, the parameter �± is uniquely determined.
The picture is the same as in the perturbed AL case. The only
difference is a renormalization of the amplitude parameter �±
given by Eq. �43� instead of Eq. �15�.

We next perform the linear stability analysis of the fixed
points. The linearization of the system of ordinary differen-
tial equations for the soliton parameters around the stationary
points gives:

�1T = − 4� tanh �±cos�2�±��1, �44�

	1T = − 2
	1 + 16�4�
sinh2�±

�±
3sinh��2

�±
� x1, �45�

�1T = 2�sinh � + ���Q��0���=�±
�1 − 2
�1, �46�

x1T = 2�1 − ��
sinh �±

�±
	1 + 2�

sinh2�±

�±
2cosh �±

	1

− �
tanh �±

�±
3

�2 + 4�±
2

6
cos�2�±�	1

− 

tanh �±

�±
2

4�2

sinh��2

�±
� x1. �47�

This 4�4 linear system can be decomposed into two 2�2
linear systems, for ��1 ,�1� and for �	1 ,x1�, respectively. It is
then easy to compute the eigenvalues. They are:

�±
�1� = − 
 + �±,

�±
�2� = − 
 − �±,

�±
�3� = − 
�1 +

tanh �±

�±
2

2�2

sinh��2

�±
�� + �̃±,

�±
�4� = − 
�1 +

tanh �±

�±
2

2�2

sinh��2

�±
�� − �̃±,

where the complex numbers �± and �̃± are given by

�±
2 = 
2 − 8� tanh �±cos�2�±��sinh � + ���Q��0���=�±

,

�48�

�̃±
2 = 
2�1 −

tanh �±

�±
2

2�2

sinh��2

�±
��

2

+ 16�4�
sinh2�±

�±
3sinh��2

�±
�
2�1 − ��

sinh �±

�±
+ 2�

sinh2�±

�±
2cosh �±

− �
tanh �±

�±
3

�2 + 4�±
2

6
cos�2�±�� . �49�

The eigenvalues �±
�1� and �±

�2� describe the growth rates of
the perturbations of the amplitude parameter � and phase
parameter �. The eigenvalues �±

�3� and �±
�4� describe the

growth rates of the perturbations of the velocity parameter 	
and soliton center x.

The function ��sinh���+���Q��0� is positive valued.
Therefore, the real part of the eigenvalue �−

�1� is positive and
the stationary point labeled “−” is unstable. Besides, the real
parts of the eigenvalues �+

�1� and �+
�2� are nonpositive for any

FIG. 9. Time evolution of the unstable dn solution in Eq. �25�
obtained for �=0.02. Other parameters are fixed as in Fig. 8.
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�0. The real parts of �+
�3� and �+

�4� are also nonpositive,
which implies that the stationary point labeled ‘‘+’’ is stable.

When � is large �say equal to 1�, it is important to choose
a suitable value � so that the soliton parameter �+ defined by
Eq. �43� is small �more exactly, smaller than 0.5�. Indeed, the
theoretical analysis based on the perturbed IST is valid only
in this case. Furthermore, numerical simulations show that
Eq. �43� is not a stationary point for larger values of �+,
which shows the fundamental limitation in the perturbed IST.
Within this region of parameters, the soliton parameters �
and � oscillate with the frequency �+ given by Eq. �48� and
they also experience an exponential decay with the rate 
.
The oscillation period and damping rate are confirmed by
numerical simulations �Fig. 10�.

Moreover, as in the AL case, the propagation of moving
solitons is not supported, as the soliton velocity decays ex-
ponentially to 0. If we denote by 	0 the initial value of the
parameter 	, then the input soliton converges to its stationary
form centered at

xF = �1 − ����sinh �+ sin 	0�/��+
��

+ ���sinh2�+ sin 	0�/��+
2 cosh �+
�� . �50�

Notice that we have neglected higher-order term �in �� in

this expression, which is consistent with the previous hy-
potheses and which gives a very accurate prediction for the
final soliton position �see Fig. 11�.

V. CONCLUSION

In this paper we have investigated the existence and sta-
bility properties of additional types of bright discrete solitons
in discrete nonlinear Schrödinger-type models with damping
and strong rapid drive. Stable stationary solitons are exhib-
ited in the case of a general cubic nonlinearity. If the nonlin-
earity has the special AL form, then stationary solitons, mov-
ing solitons, and periodic trains of solitons are found to be
stable solutions of the system. These results have been ob-
tained by applying a perturbed inverse scattering transform
to the averaged equation and confirmed by numerical simu-
lations. This means that the inverse scattering theory is use-
ful for probing the parameter space and exhibiting interesting
phenomena. One of the problems that should be addressed
for future consideration is the mechanisms responsible for
the instabilities of the periodic cn and dn solutions for large
drive, which seem to be different since a chaotic instability
appears first in the dn case, while new patterns with different
periods appear in the cn case.
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FIG. 10. Here �=1, �=0.3, �=0.022, �=0.02. The T and t
scales coincide. The initial condition is a soliton with �=�+, x+

=0, 	=0, and �=�+−0.02=0.45. The upper graph shows the argu-
ment of a0�t� �dashed line�. The observed oscillations and damping
are correctly predicted by the model. The period is 2� /�+=43.9
and the exponential decay rate is 
=0.02 �solid line�. Note also, in
the lower graph, that the stationary profile is not exactly the sech
predicted by the AL theory, but a slightly deformed version.

FIG. 11. Here �=1, �=0.3, �=0.022, �=0.02. The initial con-
dition is a soliton with �=�+, x+=0, 	=0.1, and �=�+=0.47. We
plot the soliton profiles �an�t�� at different times, which exhibits the
trapping of the moving soliton. The solid line is the theoretical
stable stationary soliton centered at xF=4.82 given by �50�.

GARNIER, ABDULLAEV, AND SALERNO PHYSICAL REVIEW E 75, 016615 �2007�

016615-10



�1� M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. Lett. 87,
254102 �2001�.

�2� A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353
�2001�; F. Kh. Abdullaev, B. B. Baizakov, S. A. Darmanyan,
V. V. Konotop, and M. Salerno, Phys. Rev. A 64, 043606
�2001�.

�3� F. Kh. Abdullaev, E. N. Tsoy, B. A. Malomed, and R. A.
Kraenkel, Phys. Rev. A 68, 053606 �2003�.

�4� A. V. Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, and M.
Salerno, Phys. Rev. Lett. 93, 087001 �2004�.

�5� D. N. Christodoulides and N. Efremidis, Opt. Lett. 27, 568
�2002�.

�6� G. J. de Valcarcel and K. Staliunas, Phys. Rev. E 67, 026604
�2003�.

�7� U. Peschel, O. Egorov, and F. Lederer, Opt. Lett. 29, 1909
�2004�.

�8� A. V. Gorbach, S. Denisov, and S. Flach, Opt. Lett. 31, 1702
�2006�.

�9� M. Kollmann, H. W. Capel, and T. Bountis, Phys. Rev. E 60,
1195 �1999�.

�10� D. Hennig, Phys. Rev. E 59, 1637 �1999�.
�11� H. Susanto, Q. E. Hoq, and P. G. Kevrekidis, Phys. Rev. E 74,

067601 �2006�.
�12� I. V. Barashenkov, M. M. Bogdan, and V. I. Korobov, Euro-

phys. Lett. 15, 113 �1991�.
�13� V. V. Alexeeva, I. V. Barashenkov, and D. E. Pelinovsky, Non-

linearity 12, 103 �1999�.
�14� M. Salerno, Phys. Rev. A 46, 6856 �1992�.
�15� N. K. Efremidis and D. N. Christodoulides, Phys. Rev. E 67,

026606 �2003�.
�16� A. A. Vakhnenko and Yu. B. Gaididei, Teor. Mat. Fiz. 68, 350

�1986� �Theor. Math. Phys. 68, 873 �1987��.
�17� D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phys. Rev. E

53, 4131 �1996�.
�18� E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, Phys. Rev. E

68, 066610 �2003�.
�19� A. Khare and U. Sukhatme, J. Math. Phys. 43, 3798 �2002�;

A. Khare, A. Lakshminarayan, and U. Sukhatme, ibid. 44,
1822 �2003�; Pramana, J. Phys. 62, 1201 �2004�.

�20� R. Scharf and A. R. Bishop, Phys. Rev. A 43, 6535 �1991�.
�21� A. Khare, K. Ø. Rasmussen, M. Salerno, M. R. Samuelsen,

and A. Saxena, Phys. Rev. E 74, 016607 �2006�.
�22� O. O. Vakhnenko and V. O. Vakhnenko, Phys. Lett. A 196, 307

�1995�.

SOLITONS IN STRONGLY DRIVEN DISCRETE… PHYSICAL REVIEW E 75, 016615 �2007�

016615-11


